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SUMMARY 
A finite difference solution for laminar viscous flow through a sinusoidally curved converging-diverging 
channel is presented. The physical wavy domain is transformed into a rectangular computational domain in 
order to simplify the application of boundary conditions on the channel walls. The discretized conservation 
equations for mass, momentum and energy are derived on a control volume basis. The pseudo-diffusive terms 
that arise from the co-ordinate transformation are treated as source terms, and the resulting system of 
equations is solved by a semi-implicit procedure based on line relaxation. Results are obtained for both the 
developing and the fully developed flow for a Prandtl number of 0.72, channel maximum width-to-pitch ratio 
of 1.0, Reynolds number ranging from 100 to 500 and wall amplitude-to-pitch ratio varying from 0.1 to 0.25. 
Results are presented here for constant fluid properties and for a prescribed wall enthalpy only. 

KEY WORDS 

INTRODUCTION 

Viscous fluid flow past a wavy boundary has attracted considerable interest due to its application 
in different areas such as generation of wind waves on water, formation of sedimentary ripples in 
river channels and dunes in deserts, transpiration cooling of re-entry vehicles and rocket boosters, 
cross-hatching on ablative surfaces and film vaporization in combustion chambers. Such a 
configuration is also used in heat exchangers in order to enhance the convective heat transfer 
characteristics of the device. 

Viscous flow in sinusoidally varying channels and pipes was first treated by Burns and Parks.’ 
They carried out the solution by expressing the stream function in a Fourier cosine series under the 
assumption that both wall amplitude and Reynolds number are small enough for the Stokes 
approximation to be valid. Tsangaris and Leiter’ solved the same problem by expressing the 
stream function in a Fourier series not in the physical plane but in the transformed plane, where the 
wavy boundary is transformed into a straight one. This analytical perturbation method for creeping 
flow was later extended to laminar flow for higher Reynolds numbers by the same  author^.^ 
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However, their analysis is valid only for very small wall amplitude-to-pitch ratio. Fluid flow 
connected with heat transfer in wavy channels was calculated by Vajravelu4 by the perturbation 
method for long-wavelength channels. The heat transfer effect has also been studied by Prata and 
Sparrow’ for fully developed laminar flow in an annular duct having a streamwise periodic 
variation of the cross-sectional area. They obtained the solution by using the SIMPLE algorithm 
of Patankar.6 Some experimental work has also been carried out by Hsu and Kennedy’ to find the 
variation of pressure and shear stress along a wavy pipe for turbulent non-separated flow. 

In the present work a finite difference approach for the solution of two-dimensional, viscous 
laminar flow in sinusoidally varying symmetric channels is presented. There is no limitation to the 
ratio of wall amplitude to pitch. The discretized conservation equations are derived on a control 
volume basis.* The resulting discretized equations are solved using the SIMPLEC method 
suggested by Van Doormaal and Raithby.’ Their other suggestions regarding the use of an E- 
factor in place of the usual under-relaxation factor and the solution of the pressure correction 
equation are also adopted here. This reduces the solution cost considerably. 

FORMULATION OF THE PROBLEM 

A schematic view of the physical domain being considered is shown in Figure 1 (for the first cycle 
only). The walls of the channel are defined by a function S’(x) given by 

6’(x) = L - A[ 1 + cos(7rx/Lc)], (1) 

where 2L is the maximum width of the channel, 22 is the amplitude of the channel walls and 2Lc is 
the pitch of the wavy boundary. The origin of the co-ordinate system is placed on the entrance 
plane of the duct as shown in Figure 1. 

The governing equations to be considered here are the continuity, momentum and energy 
equations. Constant thermophysical properties are assumed and viscous dissipation is neglected in 
the energy equation. Only forced convection is considered and the channel is taken to be 
isothermal and horizontal. Moreover, the flow is considered two-dimensional. Using these 
assumptions and the dimensionless variables 

x = x JLc,  y = YIL,, u = u/u,, v = u/u,, 
p = ( P  - P O ) / ( P U 3 ,  f f=(h-h,) / (h,-h,) ,  

Y* 
V 

Figure 1. Converging-diverging channel 
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where U o ,  p o  and h, are the uniform velocity, pressure and enthalpy at the entrance to the channel 
and h, is the uniform enthalpy at the #all, the governing equations take the form 

au av 
-+--0, ax a y  

au au a p  1 u-+v-=--+- ax aY ax Re (3) 

aH 
ax a y  Pe axZ a Y z  ’ 

aH 1 (a’H I a 2 H )  u-+v-=- __ (5 )  

where Re = p Uo L J p  is the Reynolds number and Pe = RePr is the Peclet number, with Pr = p C , / k  
the Prandtl number and p, p, k and C ,  the density, dynamic viscosity, thermal conductivity and 
specific heat at constant pressure respectively for the fluid. Due to symmetry about the channel 
centreline, we need to consider only half of the channel. Thus the boundary conditions are 

U(0, Y )  = 1, P(0, Y )  = 0, H(0 ,  Y ) =  1, 

W X ,  d ( X ) / 4  = 0, 

au(x,o)/a Y = 0, V(X,O) = 0, aH(x ,o ) /aY  =o, (6) 

U ( X * , Y ) = U [ ( X * + 2 ) , Y ] ,  V ( X * , Y ) =  V [ ( X * + 2 ) , Y ] ,  

V X ,  K v / 2 )  = 0, H ( X , & W )  = 0, 

H ( X * ,  Y ) / H [ ( X * + 2 ) , Y ] = H [ ( X * + 2 ) , Y ] / H [ ( X * + 4 ) , Y ] ,  

where X *  is an arbitrary location in the fully developed region and 6 ( X )  = 26’(X)/L,. The last three 
boundary conditions in equations (6) imply periodic nature of the fully developed flow. For the 
isothermal wall condition the cross-sectional shape of the enthalpy difference [ H ( X ,  Y )  - Hw] 
repeats itself periodicaIly in the fully developed region, but the level decreases in the streamwise 
d i re~t ion .~  In fact the ratio H/H,, where H ,  is the dimensionless bulk enthalpy defined later in 
equation (16), is constant in the fully developed region. This leads to the last boundary condition in 
equations (6). 

The next step in the analysis is to introduce a transformation of co-ordinates in order to 
transform the wavy physical domain into a rectangular computational domain so as to simplify 
the application of boundary conditions at the wall. This is done by the relations 

q = X ,  5 = Y / W )  (7) 

such that 5 = kO.5 at all points on the curved boundaries. 
The lines of constant q and 5 for a given shape are illustrated in Figure 2. It is evident that a 

control volume contained between lines q = q l ,  q = qz and 5 = tl, 5 = t2 is a curvilinear element 
with non-orthogonal sides. The quantities e, and et are unit vectors in the physical co-ordinate 
system which lie along the lines of constant 5 and constant q respectively. It is evident from the 
figure that the direction of e,  changes with position whereas the unit vectors ex and ey do not 
change direction throughout the solution domain. We also note that n, the unit vector normal to 
the {-constant lines, is given by 

n = Vt/l  V t  I = a-1’2(ey -fie,), (8) 
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Figure 2. Shape of control volume in physical space 

where 

P = 5 ddld?, a= 1 +g2. 

In order to resolve the vector momentum equation (of which equations (3) and (4) are the two 
components) along the q, [ directions, the unit vectors e ,  and eg illustrated in Figure 2 are used. 
Since the lines of constant q coincide with the lines parallel to the y-co-ordinate, we have 

e g = e y .  

Since the unit vector e ,  is perpendicular to the vector n, we have 

e, * n =0, 

which yields 

e ,  = a - ' I 2  (ex + Bey). (9) 

Thus the unit vector e ,  is a function of position. The following inverse relations can be obtained 
directly from equation (9): 

e y  = e 5 .  (10) - a l 1 2  x- e,-Beg, 
The velocity vector W can be expressed as 

W = U e x +  V e y = U , e , + U r e g ,  

so that 

u, = @.'I2 u, u, = v-gu. 
Substituting e x  and e y  from equation (10) into the vector momentum equation, then collecting the 
coeficients of unit vectors e, and e5 and finally using U ,  = V - f l u ,  we find that (a) the momentum 
equation in the ?-direction is the same as equation (3) and (b) the momentum equation in the 
[-direction becomes 



LAMINAR FLOW AND HEAT TRANSFER 583 

Thus the velocity components solved for are U and U,. It turns out that the momentum equation 
(3) for the velocity component U is much simpler than the transformed version having U,, as the 
dependent variable. On the other hand, the form of momentum equation (12) is attractive since it 
displays U,  as the primary dependent variable instead of the clumsy combination of U and V that 
appears in the convective and diffusive terms of the transformed version of equation (4). 

The continuity and energy equations are scalars and remain as they are. The boundary 
conditions are 

U(O,<)= 1, P(O,t)=O, fw,<)= 1, 

U(q,0*5) = 0, H(1,0.5) = 0, u, (?, 0.5) = 0, 

Nusselt number 

The local Nusselt number, based on twice the mean width, 4(L -A), of the channel, can be written 
as 

NU =4(L-A)h, /k ,  (14) 

where h, is the heat transfer coefficient given by 

The bulk enthalpy h, is given by 

hb = Io""' u hdy 1 Io"(x) udy 

or, in dimensionless form, by 
[oa"'/' / [06""' UdY. 

H ,  = UHdY 

Since <= Y/d(X), and H ,  is a function of X alone, we get at any location X 

At axial locations where p=O we have a/an=a/ay.  Such locations have =0, 1,2, . . . . At these 
locations the Nusselt number is given by 

N U =  -4(L-~)(aH/at) ,=, . , / (H,6L,) .  (18) 

Control volume form of the conservation equations 

Using the divergence theorem the governing equations (equations (2), (3), (1 2) and (5)) are 
integrated over a control volume bounded by lines of constant q and constant < as shown in 
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Figure 2. This is done with a view to obtaining the discretization equations. Equations obtained in 
this manner express the conservation principle for the dependent variable over the finite control 
volume, just as the differential equation expresses it for an infinitesimal control volume. The 
resulting equations are: 

Continuity equation 
P 

yl - momentum equation 
P c P 

(W.n)UdS-Re-' (n-VU)dS= - (aP/BX)dV, Js Js J F  

(-momentum equation 
c c 

(W-n)  USdS-Re-' (n.VUS)dS 
J S  Js 

(gaplax - aP/a Y)d v- u(w Vg)d V +  R e -  [uv2p + 2 v u .  vp] dti, (21) 
= J V  J V  J V  

energy equation Is (W - n) H dS- Pe- (n VH) dS =0, Is 
where tiand S represent respectively the dimensionless volume and surface of the control volume. 
Also vector notation is used to keep the equations in a compact form. 

In the next step the above surface integrals are subdivided into a sum of four surface integrals 
over the segments S,, S,, S, and S,. Then the quantities dS and n for each surface are evaluated. 
For example, for surface S,, unit normal vector n=e, and dS=(d(, while for surface S,, 
n = c c -  - /?ex + ey)  and dS = a''2dv]. It is obvious that for surfaces S, and S, all the quantities are 
identical to those for surfaces S,  and S,, with the exception that the outward normal n has the 
opposite sign. It is also necessary to consider a formal transformation between derivatives with 
respect to X, Y and those with respect to yl, 5. This transformation is 

a/ax=a/aV-(g/s)a/ag, a /a r=( i / s )a /ag .  (23) 
Also for evaluating the volume integrals in equation (20) and (21), we note that d ti= 6 dq d(. 
Finally equations (20), (21) and (22) can be expressed in a common compact form as 

c 

+ j [ U , 4  + r (Q+A)]  dyl - [ U , 4  + r(Q+ A)] dyl = b, (24) 

where 4 stands for U ,  U ,  or H, r=  1/Re for the momentum equations, r=  1/Pe for the energy 
equation and 

s2 Js4 
Q = - ( E / 4  ad)/at, 
$ = pa4/at, A =  pa+/ayl. 

Y = - w / a r l ,  
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For the ?-momentum equation, b is given by 
n 

For the 5-momentum equation, b is given by 

For the energy equation, b is simply zero. 
Finally the continuity equation (19) can be written as 

If velocities are retained in terms of physical components U and V, the resulting continuity 
equation will involve two extra mass flux terms on the surfaces S ,  and S,. 

FINITE DIFFERENCE FORMULATION AND NUMERICAL SOLUTION 

Domain discretization 

For the derivation of finite difference equations the rectangular computational domain in the q, 5 
co-ordinate system is first discretized by placing grid points at the geometric centres of the control 
volumes drawn in an arbitrary non-uniform manner. In this practice a control volume face is not 
midway between adjacent grid points. This yields a less accurate finite difference representation of 
the derivatives. However, this practice has merits in that (i) the grid point at  the centre of the 
control volume well represents the control volume and (ii) discontinuities in thermophysical 
properties, boundary conditions and sources are more readily accomodated. 

If the pressure and velocities are computed at the same locations, and if linear interpolation are 
used to evaluate them at the control volume faces, unrealistic velocity fields can arise as a solution 
(Reference 6, pp. 115-120). A remedy for this is to calculate velocities and pressure at different 
locations. Thus the velocity grid points are displaced in some way from those of the pressure. The 
locations where pressure and other scalar dependent variables such as enthalpy are calculated are 
designated as main grid points. The control volumes for the velocity component U are staggered 
horizontally while those for the velocity component U ,  are staggered vertically with respect to the 
main control volumes. This staggering is done in such a way that the displaced faces pass through 
the main grid points while non-displaced faces lie along the main control volume faces. Hence the 
resultant shape of the control volume used to compute velocity components and other dependent 
variables becomes L-shaped, as shown in Figure 3. In this figure the main grid points are denoted 
by dots identified by letters P, W, E, S, N, SW, SE, NW and NE, whereas U-velocity locations are 
denoted by arrows ( w ) identified by P', W', E", S", N", S W ,  SE", NW'  and N E '  and U,-velocity 
locations are denoted by arrows ( ) identified by P ,  W ,  E ,  S', N ,  SW', SE', N W  and NE.  In the 
same figure the main control volume and the control volumes for velocity components U and U ,  
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UC - Control volume 

@Main control v01un-e 
~ 

7 I I - Control volume 

Figure 3. Type of conlrol volume considered 

are identified by inclined, vertical and horizontal hatch lines respectively. The type of control 
volume used for velocities near the boundary is different, as shown in Figure4. The various 
geometrical quantities needed for discretizing the governing equations are also shown in 
Figures 3 and 4. 

Discretization of the governing equations 

The choice of a particular scheme for discretization of the governing equations depends upon the 
relative importance of convection and diffusion. When convection is small, central differencing can 
be used to yield results of high accuracy for a suitably small mesh size. However, for fluid flow 
problems in general convection may be large. Therefore the scheme should account for the special 
influence of the upstream points. Patankar6 points out that for the one-dimensional 
convection-diffusion problem the exponential scheme provides exact results. While this scheme is 
time-consuming, an efficient scheme that closely approximates the exponential one is the power- 

Control UE volume 

@ C o n Y Y L u m e  

U 
Control volume 

Figure 4. Type of control volume at the boundary 
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law scheme.6 This is the scheme used here. Details of the method for discretization of equation (24) 
for various values of 4 are given in Reference 8 and will not be repeated here. The result is 

where the subscript m indicates the value at the point P", P or P respectively for the U-momentum, 
Ur-momentum or energy equation, subscript nb represents the value at the neighbour points in 
east, west, north and south directions, coefficient a includes both convective and diffusive 
contributions and S is the linearized source term containing the pseudo-diffusive contributions due 
to co-ordinate transformation. Note that S ,  vanishes for the U-momentum and energy equations 
but not for the Ur-momentum equation. 

Discretization of the continuity equation 

The control volume of specific interest in this case is that which surrounds the main grid point P 
in Figure 3. The surface integrals in equation (25) are now approximated by evaluating the 
integrand at points, e, n, w and s respectively. Then the integration is performed by regarding these 
values as constant over each face to obtain 

U p . . d , A (  +(U,)p,Aq- U W ! * d w A ( - ( U r ) S , A q = O ,  (27) 

where Aq and A( denote the size of the main control volume in the q and < directions respectively. 

Under-relaxation factor 

Equation (26) is non-linear since its coefficients depend upon one or more of the dependent 
variables represented by 4. To account for the resulting inter-equation linkages and non- 
linearities, repeated solutions of the nominally linear form of equation (26) are required. In order to 
moderate the changes in successive solutions for #, and thereby improve convergence, under- 
relaxation is used. 

Van Doormaal and Raithby' introduce under-relaxation through the use of an E-factor as 
follows: 

Dm 4 m  = x a n b 4 n b  + s+m + ( l  - Sm)4:2 (28) 

where 

D,=(am-Sm)( l  + 1/E) 

and 4: is the value of 4m from the previous iteration. In order to accelerate convergence, values of 
E well in excess of unity are desirable. In fact values of E in the range 2-16 were found to be useful 
for the present problem. It may be pointed out that for calculations in body-fitted co-ordinates an 
iterative method is better than direct solution methods." 

Derivation of the pressure correction equation 

We use the SIMPLEC procedure' for handling the velocity-pressure linkages. In this method 
the pressure field is first guessed. With this guessed pressure field, coefficients of the momentum 
equations can be evaluated allowing these equations to be solved to obtain the flow field. In general 
this flow field does not satisfy the continuity equation (27). Therefore this guessed pressure field is 
corrected so that the resulting velocity field satisfies the continuity equation. This is accomplished 
by the pressure correction equation which is derived9 by combining the continuity equation with 
truncated forms of the momentum equations. After solving the pressure correction equation 
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following the recommendation given in Reference 9, the velocity and pressure fields are corrected 
and the procedure is repeated until the flow field satisfies both the continuity and momentum 
equations. 

The final form of the pressure correction equation becomes 

U~P~=U,PQ+U,P& +a,PE,+a,P;+B, (29) 

where 

u E =  dp..6pz,At, a, =dW..6,..At, 

aN = dp. At/, 
ap = aE + a ,  + aN + a, 

as = d,. Aq, 

and 

with dp,>, dw-,  d,. and d,. given by 

The velocity correction equations are given by 

Pressure is updated using the relation P = P* + P’, where P* is the guessed pressure distribution 
and U*, U,* are the velocity components obtained from the momentum equations using P* as the 
distribution of pressure. 

All the discretized equations are solved by the line-by-line method using the Thomas algorithm. 
For the discretized momentum equations the off-line values are guessed using the same concept as 
described by Patankar; but for the pressure correction equation Van Doormaal and Raithby’s 
suggestion’ is used. With Van Doormaal and Raithby’s approximation for PEr equation (29) takes 
the form 

[ap - (& ~ ) ~ , ] P ~ = ~ ~ P ~ + U N P E , + U ~ P ~ + ~ , [ ( P ~ ) O - ( ~ -  I)(P;)O] + B  (30) 

when lines are swept in the direction of increasing q. Here 8 is a relaxation parameter. The 
optimal value of 8 depends upon the problem. In general 1 < 8 < 2. This approximation for off-line 
values accelerates the rate of convergence considerably. 
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Local Nusselt number 

From equation (18) the discrete values of the Nusselt number at  the locations q =0, 1 , 2 ,  . . . are 
given by 

where 

and 

A t i =  5i-<i-1, i = 2 , 3 ,  . . . , n. 

RESULTS AND DISCUSSION 

The computer code was thoroughly tested for flow through a straight channel before computing 
results for the wavy channel. Results for both the developing and fully developed regions in a 
sinusoidal wavy channel are presented in terms of computer-generated profiles in Figures 5-1 7. 
Computations were performed for a dimensionless wall amplitude A/Lc =01,0.2 and 0.25 and for 
L/Lc = 1.0. The Prandtl number was fixed at 0.72, while the Reynolds number was varied from 100 
to 500. Solutions were obtained for an isothermal wall only. The figures depict only the first few and 
the last two pitch lengths. Also, due to symmetry about the channel centreline, the figures show the 
various profiles in half of the flow domain only; computations were also performed only in half of 
the flow domain. 

Non-uniform grid spacing was employed in both directions through the use of factors defining 
the ratio of adjacent mesh sizes in each direction. In the transverse direction the mesh size was 
taken to be smallest near the channel wall and largest near the centreline of the duct. The ratio of 
adjacent grid sizes and the number of grid points in the transverse direction were taken to be 0.98 
and 20 respectively. A half control volume was taken at the channel entry and adjacent to the 
channel wall and the centreline in the 9-direction. In the axial direction X the ratio of adjacent 
grid sizes was taken to be 1.015 with 46 grid points up to X =  16. Twelve more equidistant grid 
points were taken in the range 1 6 < X < 2 0  so as to be able to apply easily the boundary 
conditions in the fully developed region. This discretization with 58 x 20 grid points was decided 
upon after considerable experimentation with accuracy of the solution and reasonable computer 
time in mind. About 50 iterations were required for A/Lc=O.l and 120 for A/Lc=0.25. 

Figures 5-8 show the behaviour of the dimensionless velocity components U and V for 
dimensionless wall amplitude A/Lc = 0.1, Re = 500 and for A/Lc = 0.25, Re = 100 at various X -  
locations noted on the figures. Figures 9 and 10 depict the dimensionless velocity vector for the 
same parameters. It is observed that the negative V-component at  the minimum cross-section and 
the positive V-component at the maximum cross-section increase with Re. This is due to the effect 
of fluid inertia on the velocity  profile^.^ Note also that in the diverging part of the channel the U -  
profiles are flattened at the centreline. From the distribution of U -  and V-components of velocity it 
is apparent that the flow becomes more asymmetric in symmetrically lying cross-sections of the 
converging and diverging parts of the channel. 
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X =  

Figure 9. Velocity vectors in a symmetrical channel with E./L,=O.lO and Re=500  

It was found that for A/Lc=O1 and R e =  100 there is no separation of flow, but when Re is 
increased to 400 the flow begins to separate. From Figure 5 one finds a small backflow near the 
channel wall for A/Lc = 0.1 and R e  = 500. The corresponding separation points ( S )  and reattach- 
ment points (R) are also shown in Figure 5. It was observed that as R e  increases, the separation 
point moves upstream and the reattachment point moves downstream. The separated flow region 
grows not only with Re but also with the wall amplitude. From Figure 13 it is evident that for 
i / L C  =0.2 and R e =  500 the backflow becomes stronger as well as more extensive. Moreover, for 
higher AILc and Re separated flow occurs in the converging portion of the channel as well. 

Figures 11 and 12 depict the behaviour of the dimensionless fluid enthalpy for the same 
combination of A/LC and Re values. From these figures we note that as the wall amplitude 
increases, the difference between the fluid enthalpy at the centreline and that at the wall decreases 
substantially. A similar effect can also be observed for a decrease in Re. Of these two parameters, 
the non-dimensional parameter A/Lc has the stronger effect in reducing this difference. From a 
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X =  0.00 0.39 0.93 1.48 2.04 2.63 3.23 3.85 

- - - = 
3.85 4.49 5. I5 5.83 6.52 2 24 7.99 

- 
16.50 

- 
18.50 

- - 
19.17 19.83 

Figure 10. Velocity vectors in a symmetrical channel with L/L,=O25 and Re= 100 

careful inspection of the same figures it is seen that a point of inflection appears in the enthalpy 
profiles in the separated region, whereas in the non-separated region the enthalpy profile is almost 
parabolic. 

Figures 14 and 15 show the dimensionless pressure distribution in the downstream direction for 
the same AIL, and Re values. It is possible to express this distribution as 

P ( X )  = - f ( X )  + f ’ ( X ) ,  

where f ’ ( X )  behaves in a periodic fashion from cycle to cycle and f ( X )  is linear in the fully 
developed region and nearly linear in the developing region. In a channel with straight walls 
f ’ ( X )  = 0 and f ( X )  is linear in the fully developed region. The per-cycle pressure drop AP in the fully 
developed region is constant for each cycle but increases with an increase in wall amplitude. The 
variation of pressure in the Y-direction is negligible and has therefore not been shown. 

Figures 16 and 17 depict the variation of local Nwselt number for the same values of A/Lc and 
Re. While the Nusselt number is constant in a straight channel, it is larger and varies almost 
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Figure 13. Velocity vectors in a symmetrical channel with I/L,=O.2 and Re=500  

X- 

Figure 14. Centreline pressure distribution along X for a symmetrical channel with A/L,=O.l and R e = 5 0 0  

X -  

a 

-3.0 - 

Figure 15. Centreline pressure distribution along X for a symmetrical channel with A/L,=O.25 and Re=100 
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2.4X10'  I I 1 1 

Figure 16. Variation of Nusselt number with X for Re=500 and 1/LC=O1. 

sinusoidally in a wavy channel and increases with Re. As expected, the Nusselt number is larger at 
the minimum cross-section and smaller at  the maximum cross-section. The dashed line on these 
figures represents the constant value (7.54) of the Nusselt number for fully developed flow in a 
straight channel with isothermal walls. 

CONCLUSIONS 

A numerical solution for the laminar viscous flow with heat transfer in a sinusoidally curved 
converging-diverging channel has been obtained using body-fitted co-ordinates. Results found for 
a fixed Pr and LIL, but for various values of Re and AIL, show the following: 

The flow separates mainly in the diverging portion, but for higher Re and AIL, it separates in the 
converging portion as well. A point of inflection is observed in the enthalpy profiles in the separated 
region, whereas in the non-separated region this distribution is almost parabolic. Due to the effect 
of inertia,3 the negative V-component of velocity at the minimum cross-section and the positive V- 
component at the maximum cross-section increase with Re. The pressure variation in the Y- 
direction is negligible, while in the axial direction it is a combination of a nearly linear and periodic 
variation. Per-cycle pressure drop in the fully developed region is constant for each cycle and 
increases with Re and A/L,. The Nusselt number varies sinusoidally and increases with the 
Reynolds number, unlike that in a straight channel. 
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Figure 17. Variation of Nusselt number with X for Re= 100 and L/L,=O.25 
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